

approach to ensure fault-tolerance is replication, and typically

quorums are used, where quorums of sets of replicas are chosen

so that any two quorums have a none empty intersection. In a

database system, read operations are expected to be much more

frequent thanwrite operations, hence in a typical database system

read operations acquire shared read locks while write operations

acquire exclusive write locks. Furthermore, in a replicated fault-

tolerant setting, asymetric quorums are typically used, i.e., read

operations use read quorums and write operations use write quo-

rums, where read quorums do not need to intersect, but should

intersect with write quorums. Since read operations dominate

database workloads, read quorums are typically much smalled

than the write ones. In fact, if write availability is not critical, a

read quorum of one replica and a write quorum of all replicas is

often recommended (or to increase write fault-tolerance, a read

quorum of two replicas and a write of all replicas minus one).

Pharos supports oblivious access to replicated cloud ORAM

nodes. Figure 2 shows an example of a replicated cloud ORAM

node. The trusted proxy and the cloud storage are replicated to

tolerate the failure of different system components (the cloud

or the trusted proxy). Clients independently communicate with

different trusted proxies to serve their read and write operations.

During the demo, the attendees will be challenged to support

a concurrency control and replication scheme. The traditional

approaches of locking and asymmetric quorums will be proposed

and contrasted with lock-free and symmetric quorums. Either

the attendee or the system will propose an attack to illustrate the

possible data access privacy violations in the chosen solutions.

Pharos is a demonstration that will help bridge the gap between

the database community and the security and privacy commu-

nity by highlighting the privacy hazards in standard database

solutions. Pharos presents attendees different attacks, thus giving

them a real sense of the potential hazards of using a replication

technique or an operation execution technique on the privacy of

data access patterns.

2 DATA MODEL

We give a brief overview of oblivious storage systems that de-

pend on a trusted proxy [3, 13, 14]. As shown in Figure 1, an

ORAM node consists of a storage service that is outsourced to

the cloud and a trusted proxy that is deployed in between to

mediate client server communication as well as to execute the

oblivious algorithm. Data is stored in a key-value store, which

is encrypted and outsourced to the storage and the meta-data

used to locate objects in the storage is maintained in the trusted

proxy. Clients submit single operations: object lookups, get(k),

and object updates, put(k,v), to the trusted proxy, where k is a

key, and v is a value. The trusted proxy translates these requests

into oblivious retrievals (OR) and oblivious evictions (OE). An

oblivious retrieval translates a client get or put of an object O

into fetching multiple objects where accessing O is obfuscated

among the fetched objects. The trusted proxy has to write-back

the retrieved objects by performing an oblivious eviction. An

oblivious eviction hides the type of client access, (get or put),

and the access frequency of different objects by shuffling and

re-encrypting all the fetched objects at the trusted proxy before

writing them back to the storage. Also, the trusted proxy has

to update its meta-data to be able to locate these objects in the

storage for later accesses.

3 THREAT MODEL

We consider the threat model for asynchronous ORAM that is in-

troduced in [13]. The threatmodel assumes an honest-but-curious

adversary which can see the raw storage and network commu-

nication of the server. It controls the asynchronous links where

arbitrary delays can be added to different communication mes-

sages. Additionally, an adversary can adaptively schedule access,

read and write operations and learn the timing of the responses.

This security definition is called aaob-security. It formalizes the

obliviousness in asynchronous and concurrent multiple access

deployment scenarios and ensures that two timing consistent

executions should be indistinguishable in the described threat

model.

4 PRIVACY HAZARDS OF TYPICAL

DATABASE TECHNIQUES

Replication has always been used to provide fault tolerance to

database systems. Many of the database replication techniques

were developed to focus on performance and data consistency

assuming that all the data replicas are trusted. Designing systems

where privacy is considered a first class requirement narrows the

design choices. Many common design alternatives that enhance

the performance might lead to a data access pattern privacy vio-

lation. We first illustrate the privacy hazards of using asymmetric

read and write quorums. Then we demonstrate the problems of

using lock-based concurrency control solutions.

4.1 Asymmetric Quorums Hazard

Database replication is commonly used to tolerate server failures.

Once data is replicated, consistency becomes an important chal-

lenge. We assume linearizability [10] as a correctness condition

for object accesses. Reading an object should always return the

most recent committed update to this object. Although repli-

cas can have different versions of the same object, client reads

should always return the latest value of an object. This behavior

is defined as operation consistency [2]. Operation consistency re-

quires that clients receive the correct expected results regardless

of the state consistency of replicas.

Different replication strategies introduce a trade off between

fault tolerance, the number of replica failures f that the system can

tolerate before it stops completely, and performance, the number

of replicas that should be accessed per read and update operations

for a given consistency requirement. We present the trade offs of

different replication strategies.

Linearizability and operation consistency on the object level

are achieved using quorums and version numbers [8]. A read

quorum (qr) is the minimum number of replicas that need to

be accessed to retrieve the latest value of an object. A write

quorum (qw) is the minimum number of replicas that need to

be updated to guarantee consistent reads. To achieve operation

consistency, any read quorum should intersect with all write

quorumsqr∩qw , ϕ. This intersection guarantees that a readwill

always access the latest value of an object. To achieve total order

on updates, a centralized sequencer can be used to assign total

order version numbers for updates. In this case, write quorums

do not have to intersect (e.g. write one read all). However, a total

order can be achieved in a distributed way using quorums. In

this case, any two write quorum qw1 and qw2 should intersect in

at least one replica qw1 ∩ qw2 , ϕ. This intersection guarantees

that objects will be updated in the same order in all the quorum

replicas.

703

Table 1: Summary of different replication strategies, their

requirements, and their guarantees.

Replication

Strategy

|qr | |qw | f Hazardous?

Master/Slave

(read optimized)

1 N 0 Yes

Master/Slave

(write optimized)

N 1 0 Yes

Majority quorums N/2 N/2 N/2 - 1 No

Grid quorums [5]
√
N 2.

√
N

√
N − 1 Yes

Tree quorums [1] loд(N) loд(N) loд(N) − 1 No

Table 1 summarizes the commonly used quorum sizes and their

degree of fault tolerance in the worst case. Majority quorums

tolerate the failure of any number of replicas less than a majority.

It executes read and write operations from majority quorums.

Master/slave (read optimized) requires write quorums of size N.

If updates are sent to all the replicas, reading from any single

replica returns the most up to date version of an object. Similarly,

master/slave(write optimized) requires read quorums of size N

and write quorums of size 1. Reading all the replicas of an object

guarantees freshness given that updates are applied to at least one

replica. In a master/slave model, the failure of one replica halts

any update(read optimized) or read(write optimized) and hence

stops the whole system. Many proposals are based on the notion

of logical structures that are imposed on the replicas and used to

reduce the cost of quorums, while maintaining the intersection

property. As a result, usually, one operation, eg, read operations,

requires smaller quorums and hence is cheaper, but then write

operations are more expensive. Cheung et al. [5] proposed the

grid protocol to maintain replicated data. Replicas are ordered in

a grid and a read quorum is any row or any column in the grid

and a write quorum is any row together with any column in the

grid. The failure of a full row or a full column halts the system

and prevents any updates. Agrawal and El Abbadi [1] present

tree quorums where read quorums and write quorums are paths

in the tree from the root to a leaf. The failure of a full path stops

the system.

The last column of Table 1 indicates if a replication strategy

could introduce any privacy hazards on the data access patterns.

As shown, all replication strategies that use symmetric read and

write quorums are safe while others that use asymmetric read

and write quorums are hazardous.

Recall that in the threat model of Section 3, an adversary

monitors all the communication links between the clients and

the trusted proxies. When asymmetric read and write quorums

are used, the adversary can easily distinguish between read and

write accesses by observing the number of messages sent per

access. This allows the adversary to identify the type of access for

every legitimate client request. Although asymmetric quorums

can benefit the system performance, they can easily be used to

leak the access type which represents a privacy hazard on the

data access patterns.

4.2 Locking Hazards

All trusted-proxy-based ORAM systems assume a single trusted

proxy that serves all the client requests. This single trusted proxy

is responsible for hiding the access patterns of all client requests

and achieving linearizability of access for every data object. Upon

replicating the ORAM nodes and their trusted proxies, the prob-

lem of consistently updating the data replicas occurs. In particular,

concurrent updates on the same object need to be serialized across

the different data replicas. A widely used approach to tackle this

problem is locking. When a client updates a data object, she first

acquires an exclusive lock on this object from a write quorum.

Upon receiving the lock response from a write quorum, the client

updates the data object and releases the locks. This prevents any

inconsistencies that may occur from concurrent updates on the

same object. Any concurrent access on the same object that is

issued by another client has to wait until the locks are released.

However, this concurrent access would not block if it updates a

different object.

Recall that in the threat model of Section 3, an adversary can

adaptively schedule read andwrite accesses while trying to under-

stand the objects that are being accessed by other clients. When

locks are used, the adversary can concurrently schedule write

accesses on all the objects immediately after a legitimate client’s

access. The adversary should receive the requested locks on all

the objects except the one that is being access by the legitimate

client. By observing the locking responses, the adversary can

identify which object is being accessed by the legitimate client

request. This attack illustrates the hazard of using locks on the

privacy of data access patterns.

5 PHAROS

Figure 3: An adversary tries to understand the request

types and the data records accessed by a legitimate client.

We propose Pharos to motivate a deeper understanding and

appreciation of the privacy hazards that result from the naive

application of locks and asymmetric quorums to replicate ORAM

stores. Both the attacks on locks and asymmetric quorums result

from observing only the communication patterns between the

client and the trusted proxy. These attacks are independent of the

ORAM implementation. Therefore, we assume a simplified sys-

tem implementation to illustrate the attacks without distracting

the attendee with the ORAM implementation details.

The setup: we assume a simple dataset of 10 student records

stored in the ORAM node. Each record has a student name and a

grade. The dataset is replicated into three trusted-proxy-based

ORAM nodes for fault tolerance. These ORAM nodes are hosted

on three cloudmachines. The attendee gets to know that locks are

used to ensure the consistency of the updates. Also, asymmetric

read one write all quorums are used to optimize the latency

of read operations. Recall that in the data model of Section 2,

704

a client can submit get(student_name) to read the record of a

student and put(student _name, grade) to update the grade of a

student. There are two types of players in the system: legitimate

clients and adversaries. A legitimate client submits requests to

read or update a data record. An adversary monitors the network,

adds delays to messages, and schedules read and write requests

in an attempt to reveal the data record or the type of request

submitted by a legitimate client. To simulate adversarial network

monitoring, each ORAM node sends the adversary the number of

messages it receives and an identification of the source of these

messages. The setup and the adversary capabilities are shown in

Figure 3.

This demonstration proceeds in multiple rounds where the

attendee gets to play one of the two roles and the presenter plays

the other role. In the first round, the attendee is asked to update

some student record and the presenter, on another machine, tries

to reveal the data record. In the second round, the attendee and

the presenter flip roles. The presenter submits a sequence of read

and update requests and the attendee tries to reveal the type

of request submitted by the presenter. The attendees who are

able to explain how the two attacks work will have their names

written on the leader board.

6 CONCLUSION

Private access of data stores is becoming very relevant in the con-

text of cloud computing. Prior work in the security community

focused on the privacy of access. We strongly believe that for

the success of the cloud, both privacy and fault-tolerance dimen-

sions need to be addressed. The goal of Pharos is twofold. First

we propose some simple but effective attacks that reveal signifi-

cant security leaks when the standard approaches for replication

are incorporated in a straightforward manner with the privacy

preserving solutions. Second, Pharos is a pedagogical game that

educates the attendee on the privacy hazards of replication. Our

aim is to make the database practitioner attendee aware of these

challenges and hence be motivated to better understand the pri-

vacy concerns when designing fault-tolerant database systems.

7 ACKNOWLEDGEMENT

This work is partially supported by NSF grants CNS-1528178 and

CNS-1649469.

REFERENCES

[1] Divyakant Agrawal and Amr El Abbadi. 1991. An efficient and fault-tolerant
solution for distributed mutual exclusion. ACM Transactions on Computer
Systems (TOCS) 9, 1 (1991), 1ś20.

[2] Marcos K Aguilera and Douglas B Terry. 2016. The Many Faces of Consistency.
IEEE Data Eng. Bull. 39, 1 (2016), 3ś13.

[3] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang,
and Yan Huang. 2015. Practicing Oblivious Access on Cloud Storage: The
Gap, the Fallacy, and the New Way Forward (CCS ’15). ACM, 837ś849. DOI:
http://dx.doi.org/10.1145/2810103.2813649

[4] Dan Boneh, David Mazieres, and Raluca Ada Popa. 2011. Remote Oblivious
Storage: Making Oblivious RAM Practical. Technical Report. MIT. MIT Tech-
report: MIT-CSAIL-TR-2011-018.

[5] Shun Yan Cheung, Mostafa H Ammar, and Mustaque Ahamad. 1992. The grid
protocol: A high performance scheme for maintaining replicated data. IEEE
Transactions on Knowledge and Data Engineering 4, 6 (1992), 582ś592.

[6] Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica Staddon,
Ryusuke Masuoka, and Jesus Molina. 2009. Controlling Data in the Cloud:
Outsourcing Computation Without Outsourcing Control. In Proceedings of
the 2009 ACM Workshop on Cloud Computing Security (CCSW ’09). ACM, New
York, NY, USA, 85ś90. DOI:http://dx.doi.org/10.1145/1655008.1655020

[7] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s highly available key-
value store. ACM SIGOPS operating systems review 41, 6 (2007), 205ś220.

[8] David K Gifford. 1979. Weighted voting for replicated data. In Proceedings of
the seventh ACM symposium on Operating systems principles. ACM, 150ś162.

[9] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Sim-
ulation on Oblivious RAMs. J. ACM 43, 3 (May 1996), 431ś473. DOI:

http://dx.doi.org/10.1145/233551.233553
[10] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A correct-

ness condition for concurrent objects. ACM Transactions on Programming
Languages and Systems (TOPLAS) 12, 3 (1990), 463ś492.

[11] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Ramification, Attack and Miti-
gation. In 19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012.

[12] Jacob R. Lorch, Bryan Parno, James Mickens, Mariana Raykova, and Joshua
Schiffman. 2013. Shroud: Ensuring Private Access to Large-Scale Data in the
Data Center. In USENIX FAST ’13. USENIX, 199ś213. https://www.usenix.org/
conference/fast13/technical-sessions/presentation/lorch

[13] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro. 2016. TaoStore: Over-
coming Asynchronicity in Oblivious Data Storage. In 2016 IEEE Symposium on
Security and Privacy (SP). 198ś217. DOI:http://dx.doi.org/10.1109/SP.2016.20

[14] Emil Stefanov and Elaine Shi. 2013. ObliviStore: High Performance Oblivious
Cloud Storage. In IEEE SP ’13. 253ś267. DOI:http://dx.doi.org/10.1109/SP.2013.
25

[15] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. 2012. Towards
Practical Oblivious RAM. In NDSS ’12. http://www.internetsociety.org/
towards-practical-oblivious-ram

[16] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: An Extremely Simple
Oblivious RAM Protocol (CCS ’13). ACM, 299ś310. DOI:http://dx.doi.org/10.
1145/2508859.2516660

[17] Peter Williams, Radu Sion, and Alin Tomescu. 2012. PrivateFS: A Parallel
Oblivious File System (CCS ’12). ACM, 977ś988. DOI:http://dx.doi.org/10.
1145/2382196.2382299

705

	Pharos: Privacy Hazards of Replicating ORAM StoresVictor Zakhary, Cetin Sahin, Amr El Abbadi, Huijia Lin, Stefano Tessaro

